NAVAL POSTGRADUATE SCHOOL Monterey, California

RANDOM RECORD MODELS

by

Donald P. Gaver

October 1975

Approved for public release; distribution unlimited.
Prepared for:
National Science Foundation
Washington, D. C. 20550

NAVAL POSTGRADUATE SCHOOL

Monterey, California
Rear Admiral Isham Linder Jack R. Borsting
Superintendent

The work reported herein was supported by the National Science Foundation.

Reproduction of all or part of this report is authorized.

Prepared by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THISPAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFERE COMPLETING FORM
1. REPORTNUMBER NPS55GV75102	2. GOVT ACCESSION NO.

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the ebatract ontered in Block 20, if different from Report)
. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reveree ide if neceeeary and ldentify by block number)

Records Decisions
Renewals Reliability
20. ABSTRACT (Continue on reveroe oldo if nocoeoary end identity by biock number)

We study record times, mainly, and sizes in the following context. Let X_{n} denote the size of the nth event occurring in a point stochastic pacing process, P the X_{n} is i.i.d., and P is, variously, Poisson, negative binomial, renewal, and Furry. Explicit distributions of first record times are (con
found, domains of abstraction studied, and the asymptotic lognormality of the $n \xrightarrow{\text { th }}$ record time is shown for Poisson P.

RANDOM RECORD MODELS

Donald P. Gaver*
Naval Postgraduate School

1. Introduction.

Many situations suggest the study of the following class of models: a point stochastic pacing process, P, with counting process $\{N(t), t \geq 0\}$ develops over time, and associated.with each event or "point" is a real-valued random variable, x; let X_{n} denote the $n \frac{\text { th }}{}$ such random variable, realized at the moment N(t) first reaches n. Here P may be interpreted as specifying the occurrence of demands--or supplies--of goods, water, payments or reimbursements, opportunities, etc., while X represents a generic demand or reward size, X_{n} being the magnitude of the n th event. Alternatively P governs the occurrence of system shocks, possibly caused by floods or earthquakes, and X is a generic shock magnitude.

The objective of this paper is to introduce various simple models for P, and for $\left\{X_{n}\right\}$ and to study the occurrence of record events ("new highs") in the X-sequence as they appear under the stimulus of P. Related investigations are those into the classical record problem by Barton and Mallows [l], Chandler [2], Foster and Stuart [7], and Shorrock, e.g. [13], [14]. The studies of extremal processes by Dwass [4], [5], see also Resnick [12] and Resnick and Rubinovitch [ll] also are pertinent. In particular

[^0]Pickands, in [10], allows record events to be Poisson paced. The results reported in this paper are mainly explicit forms, and domains of attraction, for first record-time distributions when P is one of several familiar point processes (Poisson, renewal, pure birth). In addition we point out that our distributions may be interpreted as equipment lifetime distributions in the reliability sense, and that the classical "marriage problem" of sequential decision theory, cf. De Groot [3], may be viewed as a record problem.

2. Process Specification.

A point stochastic pacing process, P, with counting process $\{N(t), t \geq 0\}$ governs the occurrence of values, denoted by $\left\{x_{n}, n=0,1,2, \ldots\right\}$. Assume P and $\left\{x_{n}\right\}$ to be mutually independent, and the $\left\{X_{n}\right\}$ to be an i.i.d. sequence with absolately continuous def. $F(x)$. Mainly we shall assume that P is an orderly process, so we can speak of the times between successive events in P; let the $n \frac{t h}{}$ of these be $\left\{T_{n}, n=1,2, \ldots\right\}$ so that the time of the $n \frac{t h}{}$ process event is $t_{n}=\sum_{i=1}^{n} T_{i}$, $n=1,2, \ldots$ Suppose that at $t=0$ a reference value, X_{0}, is available; X_{0} is a random variable with def. $F_{0}(x)$.

Definition. A first record with respect to X_{0} occurs at $t=t_{n_{1}}$ if (a) $x_{i}<x_{0}$, all $i<n_{l}$ (b) $X_{n_{l}}>x_{0}$, in which case $\tau_{1}=t_{n_{l}}=$ the first record time, and $X_{n_{1}}=R_{1}$, the first record value. Subsequently, a $k \underline{\text { th }}$ record occurs at time
$t_{n_{k}}=\sum_{i=1}^{k} \tau_{i} \quad$ if (a) $X_{i}<R_{k-1}, \quad n_{k-1}<i<n_{k}$,
$\mathrm{X}_{\mathrm{n}_{\mathrm{k}}}>\mathrm{R}_{\mathrm{k}-1}$, and $\tau_{\mathrm{k}}=t_{\mathrm{n}_{\mathrm{k}}}-t_{\mathrm{n}_{\mathrm{k}-1}}, \quad \mathrm{R}_{\mathrm{k}}=\mathrm{X}_{\mathrm{n}_{\mathrm{k}}}$. Alternatively

$$
\begin{equation*}
{ }^{\tau_{1}}=\inf \left\{t: \max _{n \leq N(t)} x_{n}>x_{0}\right\} \tag{2.1}
\end{equation*}
$$

$$
R_{1}=X_{N\left(\tau_{1}\right)}
$$

$\tau_{1}+\tau_{2}=\inf \left\{t: \max _{n \leq N(t)} X_{n}>R_{1}\right\}$

$$
R_{2}=X_{N\left(\tau_{1}+\tau_{2}\right)} \cdots
$$

3. Poisson Paced First Records, with Variations.

Suppose P is Poisson with time-dependent rate $\lambda(t)$, and hazard $\Lambda(t)=\int_{0}^{t} \lambda\left(t^{\prime}\right) d t^{\prime} . \operatorname{If} F_{0}(\cdot)$ denotes the d.f. of X_{0}, and $F(\cdot)$ the d.f. of $\left\{X_{n}, n=1,2, \ldots\right\}$, then

$$
\begin{equation*}
P\left\{\tau(1) \varepsilon(d t), R_{1} \varepsilon(d z)\right\}=\int_{\infty}^{z} e^{-\Lambda(t)[1-F(x)]} d F_{0}(x) d \Lambda(t) d F(z) \tag{3.1}
\end{equation*}
$$

from which various special cases of interest immediately appear.
$3.1 \mathrm{~F}_{0}(\cdot)=\mathrm{F}(\cdot)$.
In this case the integration is immediate, and

$$
\begin{equation*}
P\left\{\tau_{1} \varepsilon(d t), R_{1} \varepsilon(d z)\right\}=\frac{e^{-\Lambda(t)[1-F(z)]}-e^{-\Lambda(t)}}{\Lambda(t)} d \Lambda(t) d F(z) \tag{3.2}
\end{equation*}
$$

The marginal d.f. of record size is obtained by integrating out t in (3.1); the density is

$$
\begin{equation*}
P\left\{R_{1} \varepsilon(\mathrm{~d} z)\right\}=-\log [1-F(z)] d F(z) \tag{3.3}
\end{equation*}
$$

just as in the classical setup. The marginal d.f. of ${ }^{\tau_{l}}$ is given by integrating first on z. Most simply, however,

$$
\begin{equation*}
P\left\{\tau_{1}>t \mid X_{0}=x\right\}=e^{-\Lambda(t)[1-F(x)]} \tag{3.4}
\end{equation*}
$$

Removal of the condition using $F_{0}=F$ yields

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\}=\frac{1-e^{-\Lambda(t)}}{\Lambda(t)} \tag{3.5}
\end{equation*}
$$

Note that in this, and in other, cases $P\left\{\tau_{1}>t\right\}$ is given by integration of the generating function of the counting process of P:

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\}=\int_{-\infty}^{\infty} \sum_{n=0}^{\infty} e^{-\Lambda(t)} \frac{[\Lambda(t)]^{n}}{n!} F^{n}(x) d F(x) \tag{3.6}
\end{equation*}
$$

Further note that since $\Lambda(t)$ is non-decreasing, then if $h>0$

$$
\begin{aligned}
E\left[\tau_{1}\right]= & \int_{0}^{\infty} P\left\{\tau_{1}>t\right\} d t=\int_{0}^{h} \frac{1-e^{-\Lambda(t)}}{\Lambda(t)} d t+\int_{h}^{\infty} \frac{1-e^{-\Lambda(t)}}{\Lambda(t)} d t, \\
& \left(1-e^{-\Lambda(h)}\right) \int_{h}^{\infty} \frac{d t}{\Lambda(t)} \leq E\left[\tau_{l}\right] \leq h+\int_{h}^{\infty} \frac{d t}{\Lambda(t)}
\end{aligned}
$$

so

$$
\begin{equation*}
E\left[\tau_{1}\right]<\infty \quad \operatorname{iff} \int_{h}^{\infty} \frac{d t}{\Lambda(t)}<\infty \quad \forall h>0 . \tag{3.7}
\end{equation*}
$$

For time homogeneous Poisson P it is clear that no finite moments exist.
3.2 Random (Gamma) Hazard, $F_{0}(\cdot)=F(\cdot)$.

If $\{\Lambda(t)\}$ is a gamma process, then $E\left[e^{-s \Lambda(t)}\right]=\left(\frac{\mu}{\mu+s}\right)^{k t}$, and $\{N(t)\}$ is a negative binomial process. Therefore

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\}=\int_{-\infty}^{\infty}\left[\frac{\mu}{\mu+1-F(x)}\right]^{k t} d F(x)=\frac{\mu}{1-k t}\left[\left(1+\frac{1}{\mu}\right)^{l-k t}-1\right] \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\} \sim \frac{\mu}{k t}=\frac{1}{E[\Lambda(t)]} \text { as } t \rightarrow \infty \text {. } \tag{3.9}
\end{equation*}
$$

Letting k decrease but such that $\frac{k}{\mu}=1$ induces an increasingly long Pareto tail, and a buildup of mass near zero. A similar effect is achieved by mixing Poisson P's rate parameter by the gamma (applying a gamma prior to λ):

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\}=\int_{0}^{\infty} \frac{1-e^{-\lambda t}}{\lambda t} e^{-\mu \lambda} \frac{(\mu \lambda)^{k-1}}{\Gamma(k)} \mu d \lambda=\frac{\mu}{t} \frac{\left(1+\frac{t}{\mu}\right)^{-k+1}-1}{-k+1} \tag{3.10}
\end{equation*}
$$

If P has been observed throughout the time interval ($-\mathrm{T}, 0$), and j events occurred, then the posterior is gamma with $\mu=T+a$, $k=j+b$, where the prior density is $p(\lambda)=e^{-\lambda a} \frac{(\lambda a)^{b-1}}{\Gamma(b)} a$ and (3.6) provides a Bayes-type predictor of the distribution of time
until the first record, the latter being referred to an initial x_{0} with d.f. F.
3.3 Process Observed for Initial Time T.

If the P-paced process has been observed for ($-T, 0$) and further records are referred to the largest x occurring therein, then

$$
\begin{equation*}
F_{0}(x)=e^{-\Lambda(T)[1-F(x)]} \tag{3.11}
\end{equation*}
$$

and application to (3.4) yields

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\}=\frac{\Lambda(T)}{\Lambda(T)+\Lambda(t)}\left\{1-e^{-[\Lambda(T)+\Lambda(t)]}\right\} ; \tag{3.12}
\end{equation*}
$$

with confidence given by the r.h.s. of (3.12) there will be no new maximum in $(0, t)$ greater than that in $(-T, 0)$.
3.4 The Distribution of τ_{n}.

Since τ_{n}, the time between $n-1 \frac{s t}{}$ and $n \underline{t h}$ records does not depend upon the distribution of x, we may capitalize upon the Markovian property of the exponential, $F(x)=1-\exp (-x)$, to characterize the distribution of τ_{n} for any n. Now for the time-homogeneous Poisson and exponential X,

$$
\begin{equation*}
P\left\{\tau_{n} \varepsilon(d t) \mid R_{n-1}=x\right\}=e^{-\lambda t e^{-x}} \lambda e^{-x} d t \tag{3.13}
\end{equation*}
$$

We can write the characteristic function (ch.f.) of $\log { }^{\tau_{n}}$ as follows. First,

$$
\begin{align*}
E\left[e^{i z \log \tau_{n}} \mid R_{n-1}=x\right]= & \int_{0}^{\infty} t^{i z} e^{-\lambda t e^{-x}} \lambda e^{-x} d x \\
& =\left(\frac{1}{\lambda}\right)^{i z} e^{i z x} \int_{0}^{\infty} u^{i z} e^{-u} d u . \tag{3.14}
\end{align*}
$$

Next remove the condition using the fact that R_{n-1} is gamma:

$$
\begin{gather*}
E\left[e^{i z \log \tau} n\right]=\left(\frac{1}{\lambda}\right)^{i z} \int_{0}^{\infty} e^{i z x} e^{-x} \frac{x^{n-1}}{(n-1)!} d x \int_{0}^{\infty} u^{i z} e^{-u} d u \\
=e^{i z \log \lambda}\left(\frac{1}{1-i z}\right)^{n} \int_{0}^{\infty} e^{i z \log u} e^{-u} d u \tag{3.15}
\end{gather*}
$$

which may, on the basis of ch.f. unicity, be interpreted as saying that the distribution of $\lambda \tau_{n}$ is that of the sum of two independent random variables, one being gamma with mean and variance equalling n, and the other being the logarithm of a unit exponential. Moreover, the ch.f. of $\frac{1}{n} \log \lambda \tau_{n}$ is

$$
\begin{align*}
E\left[e^{i z \frac{\log \lambda \tau_{n}}{n}}\right] & =\left(1-\frac{i z}{n}\right)^{-n} \int_{0}^{\infty} e^{i z n^{-\log u}} e^{-u} d u \tag{3.16}\\
& \rightarrow e^{i z} \quad \text { as } \quad n \rightarrow \infty
\end{align*}
$$

and invocation of the continuity theorem for the ch.f. shows that $n_{\sqrt{\lambda \tau_{n}}} \rightarrow$ e in probability. Finally, consider the ch.f. of $\frac{\log \lambda \tau_{n}-n}{\sqrt{n}}$. As n becomes large the gamma component dominates and the continuity theorem shows that the latter sequence of $r \cdot v$. tends to $N(0,1)$ in law. These results are analogous to those of Neuts [9] for the classical record problem.
4. Renewal-Paced Records.

Suppose the pacing process P is an arbitrary renewal process with i.i.d. interevent times $\left\{U_{n}\right\}$ having d.f. $H(\cdot)$, and $H(0+)=0$. Then

$$
\begin{equation*}
P\left\{\tau_{1}>t \mid X_{0}=x\right\}=\sum_{n=0}^{\infty}\left[H^{n *}(t)-H^{(n+1)^{*}}(t)\right] F^{n}(x) \tag{4.1}
\end{equation*}
$$

and, Laplace transforming, the following explicit form appears:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t} p\left\{\tau_{1}>t \mid X_{0}=x\right\} d t=\frac{l-\hat{H}(s)}{s} \frac{1}{1-\hat{H}(s) F(x)} \tag{4.2}
\end{equation*}
$$

where \hat{H} is the Laplace-Stieltjes transform of H. If $F_{0}=F$, we integrate to obtain

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t} P\left\{\tau_{1}>t\right\} d t=\frac{1-\hat{H}(s)}{-s \hat{H}(s)} \log [1-\hat{H}(s)], \tag{4.3}
\end{equation*}
$$

so

$$
\begin{equation*}
E\left[e^{-s \tau} 1\right]=1+\frac{1-\hat{H}(s)}{\hat{H}(s)} \log [1-\hat{H}(s)] \tag{4.4}
\end{equation*}
$$

Example 1. If P is time homogeneous Poisson we have seen that $P\left\{\tau_{1}>t\right\} \sim \frac{k}{\lambda t}$ as $t \rightarrow \infty, \quad$ just as is true when $H(t)= \begin{cases}l \text { for } t \geq 1 / \lambda \\ 0 \text { for } t<1 / \lambda,\end{cases}$ i.e. when records are regularly paced.

Example 2. If H is a stable distribution, then $\hat{H}(s)=e^{-s^{\alpha}}$ $(0<\alpha<1)$ and this and (4.3) yield

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t} P\left\{\tau_{1}>t\right\}=\frac{e^{s^{\alpha}}-1}{s} \log \left[1-e^{-s^{\alpha}}\right] \sim-\alpha s^{\alpha-1} \log s \tag{4.5}
\end{equation*}
$$

so by a Tauberian theorem (Feller [6], p. 447),

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\} \sim \frac{\alpha}{\Gamma(1-\alpha)} t^{-\alpha} \log t \quad(t \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

For instance if $\alpha=\frac{l}{2}$ then H tails off like $t^{-1 / 2}$ while the d.f. of τ_{1} tails off like $t^{-1 / 2} \log t$.
4.1 Domains of Attraction.

Suppose that n independent copies of ${ }^{\tau}{ }_{l}$ accumulated and summed: $S_{n}=\sum_{i=1}^{n} \tau_{l}(i)$. We record several facts about the behavior of S_{n} for large n ascertainable from general theory; see Feller, II [6], and Gnedenko and Kolmogorov [8], p. 175, Theorem 2.
A. If $P\left\{\tau_{a}>t\right\} \sim \frac{K}{\lambda t}$, as is true when P is Poisson, regular-spaced, and in other situations as well, S_{n} is attracted to a stable law of order $\alpha=1$. Direct expansion of the relevant Laplace transform around $s=0$ shows that $S_{n} / n \log n \rightarrow 1$ in probability.
B. If P is renewal with stable law of order $\alpha \quad(0<\alpha<1)$ interevent times, then because of the asymptotic behavior of 4.6), the further results of Feller [6], pp. 448-449 immediately imply that

$$
\begin{equation*}
\frac{S_{n}}{a_{n}}(\underset{\sim}{a}) z_{\alpha} \tag{4.7}
\end{equation*}
$$

Z_{α} being once again stable of order α. Here a_{n} satisfies

$$
\begin{equation*}
a_{n}^{\alpha} \sim \alpha n \log a_{n} \tag{4.8}
\end{equation*}
$$

and $a_{n}>n^{1 / \alpha}$ for large n : obviously a strong norming is required to bring the stable-paced record times back to stable. A suitable normalizing constant derived from (4.8) is seen to be

$$
\begin{equation*}
a_{n} \sim(n \log n)^{1 / \alpha} \tag{4.9}
\end{equation*}
$$

This result also follows immediately from a transform continuity theorem. Simply scale by $a_{n},\left(a_{n} \rightarrow \infty\right)$.

$$
\begin{equation*}
\left(E\left[e^{-\frac{s}{a_{n}}}{ }^{\tau} 1\right]\right)^{n}=\left\{1+\left[\exp \left(\frac{s}{a_{n}}\right)^{\alpha}-1\right] \log \left[1-\exp \left(-\left(\frac{s}{a_{n}}\right)^{\alpha}\right]\right\}^{n}\right. \tag{4.10}
\end{equation*}
$$

and expand in Taylor's series to see that if $\frac{n \log a_{n}^{\alpha}}{a_{n}^{\alpha}} \rightarrow 1$ then the above (4.10) tends to $e^{-s^{\alpha}}$, the stable law $(\alpha)^{a_{n}}$ transform.

5. Furry Records.

For variety let P be the simple pure-birth or Furry-Yule process ([6], I, p. 450) generated by $\lambda_{n}=n \lambda$. Start with a single progenitor at $t=0$ (of value X_{0} drawn from $F(x)$). Now $N(t)$, the number of new births in $(0, t)$, is geometric, and each is endowed with a value, X, that is an independent copy of X_{0}. Hence

$$
\begin{equation*}
g(z, t)=E\left[z^{N(t)}\right]=\frac{e^{-\lambda t}}{1-z\left(1-e^{-\lambda t}\right)} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{align*}
P\left\{\tau_{1}>t\right\} & =\int_{0}^{1} g(z, t) d z=\int_{-\infty}^{\infty} \frac{e^{-\lambda t} d F(x)}{1-F(x)\left[1-e^{-\lambda t}\right]} \\
= & \frac{\lambda t e^{-\lambda t}}{1-e^{-\lambda t}}
\end{align*}=\frac{\lambda t}{e^{\lambda t}-1} .
$$

where the B_{i} are the Bernoulli numbers. Integration of (5.2) yields the mean of the first record time:

$$
\begin{equation*}
E\left[\tau_{1}\right]=\lambda^{-1}\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots\right]=\frac{1}{\lambda} \frac{\pi^{2}}{6} \simeq \frac{1.65}{\lambda} . \tag{5.3}
\end{equation*}
$$

Thus the Furry P process encourages a record to occur after a mean delay of very nearly half way between the mean second and third Furry jump times.
5.1 General Pure-Birth P; Laplace Transform. If P is pure-birth with general intensity λ_{n} we find by following a recurrent events argument and an integration that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t_{P}\left\{\tau_{1}>t\right\} d t=\sum_{n=1}^{\infty} \frac{1}{n \lambda_{n}} \prod_{j=1}^{n} \frac{\lambda_{j}}{\lambda_{j}+s} ~ . ~} \tag{5.4}
\end{equation*}
$$

Now apply a Tauberian theorem allowing $s \rightarrow 0$ to obtain

$$
\begin{equation*}
E\left[\tau_{1}\right]=\sum_{n=1}^{\infty} \frac{1}{n \lambda_{n}} \tag{5.5}
\end{equation*}
$$

which shows that the first record time possesses a mean iff the series on the r.h.s. converges.

6. Models.

The P-paced record process suggests several specific models.
6.1 A Shock Model in Reliability.

Suppose X_{n} represents the magnitude of the $n \frac{t h}{}$ shock delivered by P. Let X_{0} represent the "strength" of a component manufactured to inhabit the P environment; the component survives to time t if no shock in time t exceeds X_{0}. Hence (3.5), (3.8), (3.10), and (3.12) all may be interpreted as component life distributions. It may be reasonable to replace $F_{X_{0}}$ by $[F(x)]^{k+l}, k>0$, arguing that the manufacturer will attempt to build in a safety factor; safety increases with increasing k. In this case (3.2) becomes

$$
\begin{equation*}
P\left\{\tau_{1}>t\right\}=(k+1) \int_{0}^{l} e^{-\Lambda(t) w}(1-w)^{k} d w \tag{6.1}
\end{equation*}
$$

Example. If $F(x)$ is taken to be exponential with parameter θ, so $E[X]=\theta^{-1}$ then, having observed an X we can consider setting $X_{0}=r^{-l} X, r<l$ representing a safety factor. Then

$$
\begin{equation*}
P\left\{x_{0} \leq x\right\}=1-e^{-\theta x} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{align*}
& P\left\{\tau_{1}>t\right\}=\int_{0}^{\infty} e^{-\lambda t\left[e^{-\theta x}\right]} r \theta e^{-r \theta x} d x \\
&=\frac{\Gamma(r+1)}{(\lambda t)^{r}} \int_{0}^{\lambda t} \frac{e^{-z z^{r-1}}}{\Gamma(z)} d z \sim \frac{\Gamma(r+1)}{(\lambda t)^{r}} \tag{6.3}
\end{align*}
$$

as $t \rightarrow \infty$, and an exceedingly long tail results if $r<1$, representing conservative design. The remarks of Section 4 indicate that sums of times to failure are attracted to the stable law of order r if $0<r<1$.
6.2 The Marriage Problem.

At the moments of event occurrence in a Poisson process a decision maker (art collector, suitor, employer, or what have you) is shown objects of value X. Allowed to inspect for only a finite time, and thwarted from any return to previous opportunities, he seeks to select that X of maximum value to occur in the interval.

Suppose the decision maker sets aside a time T to look over the field, leaving himself U for choice; and enjoyment or regret. $U+T$ is fixed. Let his decision rule be to examine all X-values to occur in T, and then to select the first X record, if any, thereafter. He wishes to choose U in such a way as to maximize his probability of ending up with the greatest X-value to occur during $U+T$. Following this rule enables him to select the best X to occur throughout $(0, U+T)$ with probability nearly $e^{-l}=0.368 \ldots$ exactly as in the classical formulation, cf. De Groot [3], in the event that opportunities come thick and fast, i.e. as $\lambda \rightarrow \infty$. For suppose he confronts the time period (T,T+U), committed to picking the first record therein, if any occurs. Given x was the record during ($0, T$), the probability that the first record to occur subsequently during (T,U+T) is also the last is

$$
\begin{align*}
\varphi(U, x) & =\int_{0}^{U} e^{-\lambda t[1-F(x)]} \lambda d t \int_{x}^{\infty} d F(y) e^{-(U-t)[1-F(y)]} \\
& =\int_{0}^{U} \frac{e^{-\lambda t[1-F(x)]}-e^{-\lambda U[I-F(x)]}}{U-t} d t \tag{6.4}
\end{align*}
$$

The best opportunity during $(0, T)$ has distribution

$$
\begin{equation*}
F_{0}(x, T)=e^{-\lambda T[l-F(x)]} \tag{6.5}
\end{equation*}
$$

and so the probability that the best overall is picked is

$$
\begin{equation*}
\varphi_{\lambda}(T)=\int_{-\infty}^{\infty} \varphi(U, X) d F_{0}(x, T) \tag{6.6}
\end{equation*}
$$

Now interchange integration order and invoke (3.12) to obtain

$$
\begin{equation*}
\varphi_{\lambda}(T)=\int_{0}^{U} \frac{d t}{U-t}\left\{\frac{T}{T+t}\left(1-e^{-\lambda(T+t)}\right)-\frac{T}{T+U}\left(1-e^{-\lambda(T+U)}\right)\right\} \tag{6.7}
\end{equation*}
$$

If $\lambda \rightarrow \infty$ the integral tends (bounded convergence) to

$$
\begin{align*}
\varphi(T) & =\frac{T}{T+U} \int_{0}^{U} \frac{d t}{T+t}=\frac{T}{T+U} \log \frac{T+U}{T} \\
& =-T \log T \quad \text { if } T+U=1, \tag{6.8}
\end{align*}
$$

and differentiation shows that φ is maximized for $T=e^{-1}$. Finally, $\varphi\left(e^{-1}\right)=e^{-1}$, agreeing with the classical solution, see De Groot [3], p. 331. Now if the decision maker values the time to enjoy his prize as well as its attainment then he may be tempted to optimize $\max \left(U-\tau_{1}, 0\right), \tau_{1}$ being the time of the first and only record to occur after T, measured from T as origin.

Then his expected enjoyment is

$$
\begin{align*}
\psi(T) & =\frac{T}{T+U} \int_{0}^{U} \frac{(U-t)}{T+t} d t=T \log \left(\frac{T+U}{T}\right)-\frac{U T}{T+U} \\
& =T \log \left(\frac{T+U}{T}\right)-\frac{U T}{T+U} \\
& =-T \log T-T(1-T) \tag{6.9}
\end{align*}
$$

with maximizing value close to $T=0.2$, and $\psi(0.2)=0.16$. If our decision maker chooses the latter strategy he wins with approximate probability 0.32 rather than the 0.37 probability of success achieved under the classical decision rule. On the other hand, if he chooses to observe for $T=e^{-1}$ his payoff under the timeweighted utility is 0.14. Perhaps $T=0.25$ will appeal as an easily remembered compromise that nearly maximizes both goals mentioned. Finally, if λ becomes small it may be seen that optimum $T \rightarrow 0.5$ if the above rule is followed. However, this rule cannot be optimum under such light traffic situations: for very small λ one does best by choosing the first opportunity to appear.
[1] Barton, D. E. and Mallows, C. L. (1965). Some aspects of the random sequence. Ann. Math. Statist. 36, 236-260.
[2] Chandler, K. N. (1952). The distribution and frequency of record values. J. Roy. Statist. Soc. (B) 14, 220-228.
[3] De Groot, M. H. (1970) . Optimal Statistical Decisions, McGraw Hill, Inc.
[4] Dwass, M. (1964). Extremal processes. Ann. Math. Statist. 35, 1718-1725.
[5] Dwass, M. (1966). Extremal processes II. Ill. Journal of Math. 10, 381-395.
[6] Feller, w. (1967 and 1971). An Introduction to the Theory of Probability and Its Applications, I and II. John Wiley and Sons, New York.
[7] Foster, F. G. and Stuart, A. (1954). Distribution-free tests in time series based on the breaking of records. J. Roy. Statist. Soc. (B) 16, l-22.
[8] Gnedenko, G. and Komogorov, A. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley Publishing Co., Reading, Mass.
[9] Neuts, M. F. (1967). Waiting times between record observations. J. Appl. Prob. 4, 206-208.
[10] Pickands, J., III (1971). The two-dimensional Poisson process and extremal processes. J. Appl. Prob. 8, 745-756.
[1l] Resnick, S. I. and Rubinovitch, M. (1973). The structure of extremal processes. Adv. in Appl. Prob. 5, 2l-22.
[12] Resnick, S. I. (1974). Inverses of extremal processes. Adv. in Appl. Prob. 6, 392-406.
[13] Shorrock, R. W. (1972). On record values and record times. J. Appl. Prob. 9, 316-326.
[14] Shorrock, R. W. (1973). Record values and inter-record times. J. Appl. Prob. 10, 543-555.
Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
Dean of Research 1
Code 023
Naval Postgraduate School
Monterey, California 93940
Library (Code 0212) 2
Naval Postgraduate School
Monterey, California 93940
Library (Code 55) 2
Naval Postgraduate School
Monterey, California 93940
D. R. Cox 1
Department of Mathematics
Imperial College
London, SW7
England
D. R. McNeil 1
Department of StatisticsPrinceton UniversityPrinceton, New Jersey 08540
J. A. Hooke 1
E. Wolman 1
Bell Telephone Labs Holmdel, New Jersey 07733
B. J. McDonald 1
Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217
L. Kleinrock 1
R. Muntz 1
Computer Science
University of California
Los Angeles, California 90024
J. M. Wozencraft 1
Electrical Engineering
M.I.T.
Boston, Massachusetts 02139
D. L. Iglehart 1Department of Operations Research
Stanford üniversity
Stanford, California 94305
J. RiordanDepartment of MathematicsRockefeller UniversityNew York, New York 10021
G. Fishman 1
University of North Carolina Chapel Hill, North Carolina 27514
P. T. Holmes 1Department of MathematicsClemson University
Clemson, South Carolina 29631
R. Elashoff 1
Biomathematics
University of California
San Francisco, California 94122
Gene Fisher 1
Management Science Department
RAND Corporation
1700 Main Street
Santa Monica, California 90401
R. M. Stark 1
Statistics and Computer Science University of Delaware
Newark, Delaware 19711
M. Mazumdar 1
Robert Hooke 1Mathematics DepartmentWestinghouse Research Labs
Churchill Boro
Pittsburgh, Pennsylvania 15235
J. R. Capra 1Center for Naval Analysis
1401 Wilson Boulevard
Arlington, Virginia 22209
Roy Welsch 1Sloan School
M.I.T.
Cambridge, Massachusetts 02139
John Lehoczky 1Statistics DepartmentCarnegie-Mellon UniversityPittsburgh, Pennsylvania 15213
D. P. Gaver 25
Code 55Naval Postgraduate SchoolMonterey, California 93940

U170553

[^0]: *Research support from NSF Grant AG476 at the Naval Postgraduate School is gratefully acknowledged. I wish to acknowledge useful comments by George Humfeld, Mark Westcott, and the referee.

